L2P-Norm Distance Twin Support Vector Machine
نویسندگان
چکیده
منابع مشابه
MS-TWSVM: Mahalanobis distance-based Structural Twin Support Vector Machine
The distribution information of data points in two classes as the structural information is inserted into the classifiers to improve their generalization performance. Recently many algorithms such as S-TWSVM has used this information to construct two nonparallel hyperplanes which each one lies as close as possible to one class and being far away from the other. It is well known that different c...
متن کاملThe F∞-norm Support Vector Machine
In this paper we propose a new support vector machine (SVM), the F∞-norm SVM, to perform automatic factor selection in classification. The F∞-norm SVM methodology is motivated by the feature selection problem in cases where the input features are generated by factors, and the model is best interpreted in terms of significant factors. This type of problem arises naturally when a set of dummy var...
متن کاملTwin support vector machine with Universum data
The Universum, which is defined as the sample not belonging to either class of the classification problem of interest, has been proved to be helpful in supervised learning. In this work, we designed a new Twin Support Vector Machine with Universum (called U-TSVM), which can utilize Universum data to improve the classification performance of TSVM. Unlike U-SVM, in U-TSVM, Universum data are loca...
متن کاملWeighted Twin Support Vector Machine with Universum
Universum is a new concept proposed recently, which is defined to be the sample that does not belong to any classes concerned. Support Vector Machine with Universum (U-SVM) is a new algorithm, which can exploit Universum samples to improve the classification performance of SVM. In fact, samples in the different positions have different effects on the bound function. Then, we propose a weighted ...
متن کاملRobustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2761125